2,689 research outputs found

    Barrier Softening near the onset of Non-Activated Transport in Supercooled Liquids: Implications for Establishing Detailed Connection between Thermodynamic and Kinetic Anomalies in Supercooled Liquids

    Full text link
    According to the Random First Order Transition (RFOT) theory of glasses, the barriers for activated dynamics in supercooled liquids vanish as the temperature of a viscous liquid approaches the dynamical transition temperature from below. This occurs due to a decrease of the surface tension between local meta-stable molecular arrangements much like at a spinodal. The dynamical transition thus represents a crossover from the low TT activated bevavior to a collisional transport regime at high TT. This barrier softening explains the deviation of the relaxation times, as a function of temperature, from the simple logτ1/sc\log \tau \propto 1/s_c dependence at the high viscosity to a mode-mode coupling dominated result at lower viscosity. By calculating the barrier softening effects, the RFOT theory provides a {\em unified} microscopic way to interpret structural relaxation data for many distinct classes of structural glass formers over the measured temperature range. The theory also provides an unambiguous procedure to determine the size of dynamically cooperative regions in the presence of barrier renormalization effects using the experimental temperature dependence of the relaxation times and the configurational entropy data. We use the RFOT theory framework to discuss data for tri-naphthyl benzene, salol, propanol and silica as representative systems.Comment: Submitted to J. Chem. Phy

    Crystallization in a dense suspension of self-propelled particles

    Full text link
    Using Brownian dynamics computer simulations we show that a two-dimensional suspension of self-propelled ("active") colloidal particles crystallizes at sufficiently high densities. Compared to the equilibrium freezing of passive particles the freezing density is both significantly shifted and depends on the structural or dynamical criterion employed. In non-equilibrium the transition is accompanied by pronounced structural heterogeneities. This leads to a transition region between liquid and solid in which the suspension is globally ordered but unordered liquid-like "bubbles" still persist

    The calculation of molecular Eigen-frequencies

    Get PDF
    A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible

    A Criterion for the Critical Number of Fermions and Chiral Symmetry Breaking in Anisotropic QED(2+1)

    Full text link
    By analyzing the strength of a photon-fermion coupling using basic scattering processes we calculate the effect of a velocity anisotropy on the critical number of fermions at which mass is dynamically generated in planar QED. This gives a quantitative criterion which can be used to locate a quantum critical point at which fermions are gapped and confined out of the physical spectrum in a phase diagram of various condensed matter systems. We also discuss the mechanism of relativity restoration within the symmetric, quantum-critical phase of the theory.Comment: To appear in Physical Review

    Melting and Rippling Phenomenan in Two Dimensional Crystals with localized bonding

    Full text link
    We calculate Root Mean Square (RMS) deviations from equilibrium for atoms in a two dimensional crystal with local (e.g. covalent) bonding between close neighbors. Large scale Monte Carlo calculations are in good agreement with analytical results obtained in the harmonic approximation. When motion is restricted to the plane, we find a slow (logarithmic) increase in fluctuations of the atoms about their equilibrium positions as the crystals are made larger and larger. We take into account fluctuations perpendicular to the lattice plane, manifest as undulating ripples, by examining dual layer systems with coupling between the layers to impart local rigidly (i.e. as in sheets of graphene made stiff by their finite thickness). Surprisingly, we find a rapid divergence with increasing system size in the vertical mean square deviations, independent of the strength of the interplanar coupling. We consider an attractive coupling to a flat substrate, finding that even a weak attraction significantly limits the amplitude and average wavelength of the ripples. We verify our results are generic by examining a variety of distinct geometries, obtaining the same phenomena in each case.Comment: 17 pages, 28 figure

    Observation of metastable hcp solid helium

    Full text link
    We have produced and observed metastable solid helium-4 below its melting pressure between 1.1 K and 1.4 K. This is achieved by an intense pressure wave carefully focused inside a crystal of known orientation. An accurate density map of the focal zone is provided by an optical interferometric technique. Depending on the sample, minimum density achieved at focus corresponds to pressures between 2 and 4 bar below the static melting pressure. Beyond, the crystal undergoes an unexpected instability much earlier than the predicted spinodal limit. This opens a novel opportunity to study this quantum crystal in an expanded metastable state and its stability limits.Comment: deuxi\`eme versio

    Effect of inelasticity on the phase transitions of a thin vibrated granular layer

    Full text link
    We describe an experimental and computational investigation of the ordered and disordered phases of a vibrating thin, dense granular layer composed of identical metal spheres. We compare the results from spheres with different amounts of inelasticity and show that inelasticity has a strong effect on the phase diagram. We also report the melting of an ordered phase to a homogeneous disordered liquid phase at high vibration amplitude or at large inelasticities. Our results show that dissipation has a strong effect on ordering and that in this system ordered phases are absent entirely in highly inelastic materials.Comment: 5 pages, 5 figures, published in Physical Review E. Title of first version slightly change

    Freezing of parallel hard cubes with rounded edges

    Full text link
    The freezing transition in a classical three-dimensional system of parallel hard cubes with rounded edges is studied by computer simulation and fundamental-measure density functional theory. By switching the rounding parameter s from zero to one, one can smoothly interpolate between cubes with sharp edges and hard spheres. The equilibrium phase diagram of rounded parallel hard cubes is computed as a function of their volume fraction and the rounding parameter s. The second order freezing transition known for oriented cubes at s = 0 is found to be persistent up to s = 0.65. The fluid freezes into a simple-cubic crystal which exhibits a large vacancy concentration. Upon a further increase of s, the continuous freezing is replaced by a first-order transition into either a sheared simple cubic lattice or a deformed face-centered cubic lattice with two possible unit cells: body-centered orthorhombic or base-centered monoclinic. In principle, a system of parallel cubes could be realized in experiments on colloids using advanced synthesis techniques and a combination of external fields.Comment: Submitted to JC

    Percolation of Immobile Domains in Supercooled Thin Polymeric Films

    Get PDF
    We present an analysis of heterogeneous dynamics in molecular dynamics simulations of a thin polymeric film, supported by an absorbing structured surface. Near the glass transition "immobile" domains occur throughout the film, yet the probability of their occurrence decreasing with larger distance from the surface. Still, enough immobile domains are located near the free surface to cause them to percolate in the direction perpendicular to surface, at a temperature near the glass transition temperature. This result is in agreement with a recent theoretical model of glass transition

    Density functional theory for the freezing of soft-core fluids

    Get PDF
    We present a simple density functional theory for the solid phases of systems of particles interacting via soft-core potentials. In particular, we apply the theory to particles interacting via repulsive point Yukawa and Gaussian pair potentials. We find qualitative agreement with the established phase diagrams for these systems. The theory is able to account for the bcc-fcc solid transitions of both systems and the re-entrant melting that the Gaussian system exhibits.Comment: 7 pages, 4 figure
    corecore